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Hilbert transform has the features of inducing a phase shifting of 90 degree and removing the DC
component. We propose a novel method based on the piecewise Hilbert transform to suppress the
background intensity of the deformed fringe pattern using only one fringe pattern in Fourier transform
profilometry according to the approximation that the background of the fringe is a slowly varying
function and its distribution in each half period of the fringe can be regarded as a constant. In the
method, Hilbert transform deals with each segmented fringe section to remove the DC component and
then forms a result fringe whose background intensity is suppressed well by putting the fringe pieces
together. The proposed method can enlarge the measurement range and reduce the measurement error
of FTP. The theoretical analysis is given. Computer simulations and experimental results demonstrate the
effectiveness of the proposed method.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Optical 3D measurement techniques based on the structured
light illumination are widely used in various kinds of research
fields including biomedicine, industry inspection, dynamical pro-
cess analysis and machine vision, etc because of the characteristics
of non-contact, full field analysis and high speed. Among them,
Fourier Transform Profilometry (FTP) can reconstruct the shape of
the measured object from only one fringe or at most two fringes
by Fourier transform, filtering in frequency domain and inverse
Fourier transform. After proposed by M. Takeda and K. Muloh [1]
in 1983, FTP is deeply studied and widely used [2–10]. Fourier
transform provides excellent frequency resolution without spatial
localization ability and the measurement range of Fourier trans-
form profilometry is limited. If the zero frequency component and
the high orders spectra component interfere the useful funda-
mental spectra, the reconstruction precision of FTP will decrease
greatly. In order to overcome the disadvantage of Fourier trans-
form, all kinds of methods have been proposed, such as the
technology of quasi-sinusoidal projection and π phase shifting for
suppressing the zero frequency component and high orders
spectra component [2], composite stripe projection technology for
eliminating zero frequency component [4], color fringe projection
technology for improving the accuracy and measurement range
of FTP [5,6], wavelet transform method, empirical mode
).
decomposition and Neural network, etc [7–15], to overcome the
disadvantages of FTP. These techniques have their own applica-
tions according to the property of the measured objects. For ex-
ample, π shifting technique needs to capture two fringe patterns
with πphase difference to eliminate the background intensity by
subtracting operation, which improves the accuracy and mea-
surement range but influences the real-time of FTP. It is a reliable
method for measuring the static objects with high accuracy. In the
method of projecting composite stripe, the background intensity
can be eliminated from only one captured composite deformed
fringe, but higher resolution of the CCD is needed to keep the
separation between the useful component and the other
components.

As we all know that the deformed fringe pattern is not periodic
stationary anymore, because the projected sinusoidal fringe is
modulated by the tested object. For analyzing the non-stationary
fringe signal, Empirical mode decomposition combining with
Hilbert transform is useful, in which Empirical mode decomposi-
tion decomposes the deformed fringe into Intrinsic Mode Func-
tions (IMFs) varying from high frequency to low frequency. Then
the separation of the zero frequency from the spectra would be
operational [8–10], while Hilbert transform can be seen as 90
degree phase-shifter. If the background intensity of the fringe is
eliminated by Empirical mode decomposition, a result analytic
function can be obtained by Hilbert transform, from which the
phase information can be calculated by the ratio of the imaginary
part and the real part of the analytic function. The phase accuracy
is high by this method, but the decomposition process is time-
consuming.
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Because the background intensity and contract of the deformed
fringe are slowly varying functions, the background distribution in
each half period of the fringe can be regarded as a constant ap-
proximately [11,12]. Hilbert transform has the features of 90 de-
gree phase shift and removing the DC component. Here a new
method based on twice piecewise Hilbert transform is proposed to
suppress background component of the fringe pattern. The
method can suppress zero frequency component well and improve
the measurement accuracy and range of FTP using only one fringe
pattern. The theoretical analysis is given, and computer simula-
tions and experiments are used to verify our analysis.

The organization of the paper is as follows: In Section 2, we
give the principle of FTP and Hilbert transform. In Section 3,
computer simulations are carried to compare the results obtained
from the traditional FTP and FTP combining with Hilbert trans-
form, respectively. While in Section 4, the experiments are applied
to verify the effectiveness of proposed method. Last but not least,
the conclusion is made in Section 5.
Fig. 2. Scheme of twice Hilbert transform.

2. Principles

2.1. The principle of the Fourier transform profilometry

The scheme of the FTP measuring geometry is shown in Fig. 1
[1,7].

The optical axes of projector lens P1P2 crosses that of the
camera lens I1I2 at point O on the reference plane which is per-
pendicular to the figure plane. L0 is the distance between point I2
and point O, d depicts the distance between P2 and I2. A and C are
points on the reference plane. h is the height of the point D on the
tested object ( )h x y, . A sinusoidal grating image is projected onto
the object surface. The deformed fringe pattern captured by CCD is
expressed as:

π φ φ( ) = ( ) + ( ) [ + ( ) + ( )] ( )f x y a x y b x y f x x y x y, , , cos 2 , , 10 0

Where ( )a x y, represents the background intensity, and ( )b x y, is
the fringe contrast. f0 denotes the carrier frequency. φ ( )x y,0 de-
notes the original phase caused by the non-telemetric light path of
the measurement system, corresponding to the phase on the re-
ference plane. φ ( )x y, denotes the modulation phase caused by the
tested object.

The Fourier spectrum of Eq. (1) can be expressed as:

( ) = ( ) + ( − ) + *( + ) ( )F u v A u v C u f v C u f v, , , , 20 0
Fig. 1. Scheme of the FTP measuring geometry.

Fig. 3. A segment of a captured fringe pattern.
Where, superscript “*” expresses complex conjugate. ( )A u v, re-
presents the zero spectra, corresponding the spectra of back-
ground component ( )a x y, . ( − )C u f v,0 denotes the fundamental
spectra contained the useful information of the measured object.

*( + )C u f v,0 is the conjugate of ( − )C u f v,0 . A suitable filter is used
to select one of the fundamental spectra, such as ( − )C u f v,0 . A
complex exponential signal can be obtained by calculating the
inverse Fourier transform of ( − )C u f v,0 , which is expressed as:

{ }π φ φ( ) = ( ) [ + ( ) + ( )] ( )g x y b x y j f x x y x y,
1
2

, exp 2 , , 30 0

From Eq. (3), the phase distribution π φ φ+ ( ) + ( )f x x y x y2 , ,0 0
can be obtained by extracted the complex angle of the complex
signal. A reference fringe is dealt with to obtain the original phase
ψ ( )x y,0 caused by the non-telemetric light path of the system. The
phase map φ ( )x y, corresponding to the height distribution of the
measured object can be obtained. Considering > > ( )L h x y0 , in the
practical measurement, the relationship between the height



Fig. 4. Flowchart of principle of the proposed method.
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variation of the object and the modulation phase φ ( )x y, can be
approximately expressed as [1]:

φ
π

( ) ≈ ( ) ( )x y
f d

L
h x y,

2
0

, 4
0

2.2. The principle of the Hilbert transform

The Hilbert transform of 1D signal ( )f x is defined as [15]:
Fig. 5. (a) Simulated object;(b)
∫π
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Here superscript “*” expresses convolution operation. H means
Hilbert transform. The Fourier spectra of ( ( ))H f x is expressed as:

I[ ( ( ))] = − ( ) ( ) ( )H f x j w F wsgn 6

Where wis the angular frequency, I[ ] expresses the Fourier
transform. ( )F w is the spectra of ( )f x , − ( )j wsgn is the spectra of

πx
1 .

where ( )wsgn is a sign function and is written as:
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− <

> ( )
w

w
w
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1, 0

1, 0 7
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That means Hilbert transform can carry out 90 degree phase
shifting for the positive frequency and �90 degree phase shifting
for the negative frequency. In addition, by the Hilbert transform,
the DC component is removed. If twice Hilbert transform is ap-
plied on the signal ( )f x , its phase can shift 180 degree for either
the positive or negative frequency. For example, the result of twice
Hilbert transform of a sinusoidal fringe is shown in Fig. 2. The si-
mulated signal is expressed as:

π( ) = + ( ) = ( )f x x p x0.5 0.5 cos 2 / 0, 1, ... , 255 9

where =p 64(pixel) is the patch of the fringe. In the Fig. 2, the red
line represents the original signal and the blue one represents the
result signal after twice Hilbert transform. It shows that the con-
stant background is eliminated and π phase shift is introduced in
the fringe.

When Hilbert transform is used to remove the zero frequency
component of the deformed fringe pattern, the influence from
nonuniform background intensity of the deformed fringe pattern
is needed to be considered. It is impossible to remove the back-
ground of the fringe clearly by twice full field Hilbert transform.
But the background and the contrast of the deformed fringe pat-
tern change slowly, we can assume them to be uniform at local
area. When Hilbert transform is carried out on the each segment of
the fringe pattern, ( )a x y, and ( )b x y, can be regarded as a constant
deformed fringe pattern.



Fig. 6. (a) The result fringe by superposition of the fringe segments after twice Hilbert transform; (b) the 130th line of Fig. 5(b); (c) the 130th line of deformed fringe after
twice full field Hilbert transform; (d) the 130th line of (a); (e) the spectra of (b); (f) the spectra of (c); (g) the spectra of (d).
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Fig. 7. (a) The reconstructed surface by FTP; (b) the reconstructed surface by FTP combining with twice full field Hilbert transform; (c) the reconstructed surface by FTP
combining with twice piecewise Hilbert transform; (d) the error corresponding to (a); (e) the error corresponding to (b); (f) the error corresponding to (c).
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Fig. 8. The mean square errors under the different noise levels.
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[11,12] in each segment with the length of half period of the each
row of the fringe. Making 1D case as an example, without con-
sidering the variable y, any row of the ( )f x y, can be expressed as

( )f x and each segment of the line can be written as:

⎡⎣ ⎤⎦π φ φ( ) = + + ( ) + ( ) = ( )f x a b f x x x i ncos 2 1, 2, ... , 10i i i i0 0

Where ( )f xi indicates the ith segment of the line, n represents the
number of half period of the line, ai and bidenote the background
intensity and the fringe contrast respectively in the ith half period.
ψ ( )xi denotes the modulation phase resulting from the object in
the segment. Because the deformed fringe pattern is non-sta-
tionary, the number of the sampling points in each segment is not
equal. The length of the each segment equals to the distance of
between adjacent local maximum and local minimum. As shown
in Fig. 3, the extreme points are marked by “*” in the fringe pat-
tern. In fact, the fringe ( )f x can be written in
vector[ ( ) ( ) ( ) ( )]f x f x f x f x, , , ... , n1 2 3 .

As shown in Fig. 2, the background constant can be removed
and the 180 degree phase shifting is achieved after twice Hilbert
transform. For practical fringe with nonuniform background in-
tensity, given each half period of the fringe has uniform intensity,
the background of these fringe segments can be removed by twice
Hilbert transform. The combination of these result local fringe
segments without DC component after twice Hilbert transform
forms the result fringe pattern, in which the background is sup-
pressed well and the phase changes 180 degree. Then FTP method
is used to deal with the fringe pattern, both the measurement
accuracy and range can be improved because the influence from
the zero frequency component is suppressed. The basic flow of the
proposed method is shown in Fig. 4.

Where twice Hilbert transform of each fringe segment ( )f xi can
be achieved by the following Matlab codes. A complex analytic
signal of real function can be obtained by “Hilbert” function pro-
vided by Matlab function set. The imaginary part of the complex
analytic signal is the Hilbert transform of the fringe segment,
which is exacted by function “imag”.

D1¼hilbert( ( )f xi );
D11¼-imag(D1);
D2¼hilbert(D11);
D22¼-imag(D2).

The above codes are placed in a for-loop to deal with all fringe
segments, and the result fringe can be obtained by superposition
of the fringe segments after twice Hilbert transform.
3. Computer simulations

In order to verify the method, some computer simulations are
carried out. The simulated object is expressed as:

= * ( )shape peaks x y0.95 , , as shown in Fig. 5(a). The ( )peaks x y,
function provided by Matlab platform is expressed as:

( ) = × ( − ) × ( − ( ) − ( + ) ) −

× ( − − ) × ( − − )

− × ( − ( + ) − ) ( )

peaks x y x x y

x x y x y

x y

, 3 1 exp 1

10 /5 exp

1/3 exp 1 11

2 2 2

3 5 2 2

2 2

The simulated reference fringe pattern ( )f x y, and the simu-
lated deformed fringe pattern ( )fs x y, are described as follows:

π( ) = + × ( ) ( )f x y f x, 0.5 0.5 cos 2 120

π( ) = − × + + × [ + ]
( )

fs x y
peaks

Max
f x shape, 0.4 0.3 0.5 cos 2

13peaks
0

Where = ( )f pixels1/0
1

24
,MaxPeaks is the maximum of peaks function.

The size of the fringe pattern and the simulated object is
× pixels264 264 . Assuming π =f d L2 / 0 10 in the Eq. (4), the word

“shape” represents phase modulation caused by height variation.
In order to simulate the zero frequency component extension of
the deformed fringe pattern, − ×0.4 Peaks

MaxPeaks
is added to the simu-

lated deformed fringe pattern to represent the nonuniform back-
ground distribution of the fringe pattern. The simulated deformed
fringe pattern is shown in Fig. 5(b), in which the 130th row is
marked by a red line for the next analysis.

The result fringe after twice piecewise Hilbert transform is
shown in Fig. 6(a). For clarity and comparison, Fig. 6(b), (c) and
(d) denote intensity distribution of the 130th line of the deformed
fringe pattern, the result deformed fringe pattern after twice full
field Hilbert transform and the result deformed fringe pattern after
twice piecewise Hilbert transform respectively. In the Fig. 6(b), “*”
are extreme point positions of the line which are used to de-
termine the segment lengths of each segment. Compared with
Fig. 6(b), the phase of the fringe in Fig. 6(c) and (d) shows 180
degree phase shift. In Fig. 6(c), the background distribution of the
fringe after twice full field Hilbert transform is not suppressed
well, but background distribution of the fringe after twice piece-
wise Hilbert transform, shown in Fig. 6(d) almost tends to be
eliminated. Fig. 6(e), (f) and (g) are the spectra of Fig. 6(b), (c) and
(d) respectively. We can find that the spectra becomes zero at the
point f¼0 and the slowly varying background corresponding zero
frequency component extension still exists in Fig. 6(f). However,
Fig. 6(g) shows that zero frequency component and its extension
corresponding to the nonuniform background distribution of the
fringe after twice piecewise Hilbert transform are suppressed well.

Fig. 7(a)–(c) denote the reconstructed surface by traditional
Fourier transform profilometry, FTP combining with twice full field
Hilbert transform and FTP combining with twice piecewise Hilbert
transform respectively. We can find that the reconstructed surface
shown in Fig. 7(c) is the best among the three figures because the
zero frequency component and its extension of the deformed
fringe pattern after twice piecewise Hilbert transform are sup-
pressed well. Fig. 7(d)–(f) are the error maps correspondingly. The
maximum errors are 1.752 mm, 1.4324 mm and 0.6976 mm, re-
spectively. Their mean square errors are 0.1049 mm, 0.0931 mm
and 0.0859 mm, respectively.

The effect of random noise in the proposed method is dis-
cussed. k times random noise generated by the rand function
provided by Matlab function set are added to the Fig. 5
(b) respectively, where k changes from 0.1 to 2.5 with interval 0.2.
The distribution of mean square errors under the different noise



Fig. 9. (a) The simulated object; (b) the deformed fringe pattern; (c) the spectra of the 130th line of (b); (d) the result fringe by superposition of the fringe segments after
twice Hilbert transform; (e) the spectra of the 130th line of (d); (f) the reconstructed surface from (b) by FTP; (g) the reconstructed surface from (d) by FTP combining with
twice piecewise Hilbert transform.
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Fig. 10. (a) The schematic diagram of experimental setup; (b) one of the deformed fringes; (c) the 360th line of the deformed fringe after noise pretreatment; (d) the spectra
of (c); (e) the result fringe after twice piecewise Hilbert transform; (f) the 360th line of (e); (g) the spectra of (f); (h) the reconstructed surface from (e); (i) the sections of
wave ripples at different time.

F. Luo et al. / Optics Communications 365 (2016) 76–85 83



Fig. 11. (a) The deformed fringe pattern; (b) the result fringe pattern after twice piecewise Hilbert transform; (c) the Fourier transform spectra of the 150th line of the (a);
(d) the Fourier transform spectra of the same line of the(b); (e) the reconstructed 3D shape of the ‘Mickey’ by the traditional FTP; (e) the reconstructed 3D shape of the
‘Mickey’ by the improved FTP.
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levels is shown in Fig. 8. It shows that error will rise with the
increase of noise.

A simulated triangle object is measured to verify how the algo-
rithm performs in the case of the physical discontinuity in the
measured object, because there are physical discontinuities on the
ridge and the edges of the object, as shown in Fig. 9(a). The de-
formed fringe pattern is shown in Fig. 9(b) and Fig. 9(c) gives the
spectra of the 130th line of the Fig. 9(b). Fig. 9(d) is the result fringe
obtained by twice piecewise Hilbert transform and Fig. 9(e) is the
spectra of the 130th line of the Fig. 9(d). The reconstructed surfaces
from Fig. 9(b) and (d) are shown in Fig. 9(f) and (g), respectively.
4. Experiment

Removing the zero frequency component from only one de-
formed fringe pattern can improve the measurement accuracy and
range and keep the real-time property of FTP. The improved FTP
based on Hilbert transform is applied to measure the dynamic
processing. The schematic diagram of experimental device is
shown in Fig. 10(a). The projection equipment is DLP Lightcrafer
4500, and its mirror array size is 912*1140 pixels. The imaging CCD
is Baumer (sxc100) with 1024*1024 pixels. The camera can syn-
chronize with the projector employing the trigger signal given by
the synchronization controlling units of the DLP Lightcrafer 4500.
In the experiment, the sinusoidal structured light is projected onto
a poster paint liquid, a set of deformed fringes formed by beating a
basin of the liquid are captured for reconstructing the wave rip-
ples. The size of the projected sinusoidal fringe is 912*1140 pixels
with 10 pixels per period. 700*700 pixels area of one of the cap-
tured deformed images at a certain time is cut out for verifying the
effect of eliminating the non-uniform background, as shown in
Fig. 10(b). For clarity, the 360th line of the deformed fringe marked
by the red line is shown in Fig. 10(c), in which the nonuniform
background distribution is obvious.

In Fig. 10(c), the symbol “*” marks the extreme points. In the
process of dealing with the practical deformed fringe pattern, a
noising pretreatment (Gaussian smoothing filtering) is needed to
eliminate false extreme points and make sure that the segment
lengths of the fringe can be calculated correctly. The nonuniform
background distribution will lead the zero frequency component
to extend, as shown in Fig. 10(d), which will influence the mea-
surement accuracy of the FTP. In order to eliminate the zero fre-
quency component and its extension, twice piecewise Hilbert
transforms are employed. The result fringe pattern is obtained by
connecting the result fringe segments after twice piecewise Hil-
bert transform, as shown in Fig. 10(e). Fig. 10(f) and (g) show the
intensity distribution of the 360th line of the result fringe pattern
and its spectra. The zero frequency component and its extension
are suppressed well in Fig. 10(g). The reconstructed surface from
Fig. 10(e) is shown in Fig. 10(h). If all deformed fringes captured
during a time period are processed, a dynamic 3D distribution of
water wave ripple changing over time can be obtained. The 360th
line sections of the reconstructed wave ripples at five different
times are drawn in Fig. 10(i), in which t0 is the start time, Δt is the
time interval.

Another experiment is used to compare the measurement re-
sults of a mask ‘Mickey’ by the traditional FTP and the improved
FTP based on twice piecewise Hilbert transform. The deformed
fringe pattern with nonuniform background is shown in Fig. 11(a).
The result fringe pattern after twice piecewise Hilbert transform is
shown in Fig. 11(b). The Fourier transform spectra of the 150th line
of the Fig. 11(a) is shown in Fig. 11(c), and the Fourier transform
spectra of the same line in the Fig.11(b) is shown in Fig. 11(d), in
which the zero frequency component and its extension are sup-
pressed well. The reconstructed 3D shape of the ‘Mickey’ by the
traditional FTP and improved FTP are shown in Fig. 11(e) and
(f) using the same filter, respectively.
5. Conclusion

In this paper, twice piecewise Hilbert transform method is
proposed to suppress zero frequency component from only one
deformed fringe pattern, according to the approximation that the
background of the fringe is a slowly varying function and its dis-
tribution in each half period of the fringe can be regarded as a
constant. In the method, Hilbert transform deals with each seg-
mented fringe section twice to remove the DC component. Then a
result fringe whose background intensity is suppressed well is
formed by putting these fringe pieces together. Finally the com-
bined fringe pattern is conducted by the FTP method to re-
construct the shape of the object. Computer simulations and ex-
perimental results demonstrate the effectiveness of the proposed
method in the application of eliminating the nonuniform back-
ground of the fringe.
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