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Shape-from-focus (SFF) has widely been studied in computer vision as a passive depth recovery and 3D

reconstruction method. One of the main stages in SFF is the computation of the focus level for every

pixel of an image by means of a focus measure operator. In this work, a methodology to compare the

performance of different focus measure operators for shape-from-focus is presented and applied. The

selected operators have been chosen from an extensive review of the state-of-the-art. The performance

of the different operators has been assessed through experiments carried out under different

conditions, such as image noise level, contrast, saturation and window size. Such performance is

discussed in terms of the working principles of the analyzed operators.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Estimating depth is an involved problem in computer vision
since a dimension is lost during the projection from the 3D real
world to a 2D image. If no physical interaction with the scene is
allowed (e.g., it is not possible to project a light pattern), depth can
be recovered by means of binocular (or trinocular) stereo systems,
or by taking several images with a monocular camera whose
extrinsic or intrinsic settings are changed for every frame. In the
latter approach, shape-from-focus (SFF) has been proposed as a
passive method for recovering 3D shapes. Its applications include:
PCB inspection, robot manipulation and control [1], 3D model
reconstruction [2] and manufacturing [3], among many others.

In particular, depth information is estimated in SFF from
sequences of images of the same scene captured with different
camera settings in order to change the degree of focus of every
image. The local focus variation is then used as a depth cue. The
algorithm utilized to measure the focus level for every image
pixel is usually referred to as a focus measure (FM) operator. Many
focus measure operators have been proposed in the literature for
both autofocus (AF) and SFF applications.

Specifically, several comparative studies of focus measure opera-
tors for AF applications have been carried out in [4–8]. In addition,
Subbarao and Tyan [9] proposed a theoretical method for assessing
the uncertainty of various focus measure operators as a function of
gray-level noise. In AF, the focus measure is used to determine the
position of the best focused image. In that scope, the operator is
ll rights reserved.

uam.es (M.A. Garcia).
applied to the whole image. In SFF, however, depth must be
estimated for every pixel, with the focus measure operator being
applied using a small local window. Therefore, the results of
comparative studies about FM operators applied to AF can be
extrapolated to SFF in a very limited way. Malik and Choi [10]
studied the performance of several focus measure operators under
different illumination conditions and window sizes.

The present paper presents a much more extensive analysis of
up-to-date focus measure operators applied to SFF by taking into
account both the operators and the reconstruction technique
itself. An extensive set of experiments has been carried out using
both synthetic and real image sequences in order to compare the
performance of different focus measure operators for SFF under
varying conditions of noise, contrast, saturation and window size.
The results are analyzed and discussed according to the working
principle of the tested operators. Real images have been acquired
with two different monocular cameras, whereas synthetic images
have been generated by a non-linear, shift-variant model of
defocus. In addition, some focus measure operators previously
applied to AF have been adapted to SFF.

This document is organized as follows: the next section presents
the SFF technique, including both the reconstruction scheme and a
summary of the analyzed FM operators. Section 3 describes the
methodology that has been followed in order to compare the
performance of those operators. Finally, experimental results and
conclusions are presented in Sections 4 and 5, respectively.
2. Shape from focus

In order to generate the depth-map of a scene through SFF, it is
necessary to estimate the distance of every point of the scene
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Fig. 1. Defocus using the thin lens model.
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from the camera by measuring its relative degree of focus in the
images where that point appears. Fig. 1 illustrates the effect of
defocusing in an image according to the thin lens model. If the
sensing device is at a distance d from the focus plane, point Q will
be projected onto a circle of diameter ks, and its radiance will
spread over this circle, with Q being defocused.

The location v of the focal plane depends on the focal length of
the lens, f, and the distance from the object, u. The relationship
between these three variables is given by the well known Gauss
lens law or thin lens equation: 1=f ¼ 1=uþ1=v.

Since there is a one-to-one correspondence between the object
distance u and the focal plane location v, the maximum focus will
only be achieved at a certain object distance. Therefore, the
evaluation of the focus level is critical in applications such as
autofocusing and shape-from-focus.

The SFF process consists of two main stages: focus measure
and scene reconstruction. The first step aims at measuring the
degree of focus of an image (or imaged point), whereas scene
reconstruction aims at generating accurate 3D shapes (generally
depth-maps) from the focus information obtained from the
processed images. The main focus measure operators proposed
in the literature are described below.

2.1. Focus measure operators

A wide variety of algorithms and operators have been pro-
posed in the literature to measure the degree of focus of either a
whole image or an image pixel for different applications, such as
SFF and autofocus. In this work, focus measure operators have
been grouped into six broad families according to their working
principle. A brief description of each family is presented in this
section. The reader is referred to Appendix A for a more detailed
description of every operator. Some of the operators used in this
work were originally devised for autofocus applications in order
to measure the focus level of a whole image. Therefore, they have
been modified and adapted in order to make them applicable to
SFF. Table 1 summarizes the abbreviations used in this work to
refer to the different focus measure operators. Abbreviations in
boldface indicate algorithms that have been adapted from auto-
focus and have not been previously used in SFF.

The six families of focus operators used in this work are:
1.
 Gradient-based operators (GRAn). This family groups focus
measure operators based on the gradient or first derivative
of the image. These algorithms follow the assumption that
focused images present more sharp edges than blurred ones.
Thus, the gradient is used to measure the degree of focus.
2.
 Laplacian-based operators (LAPn). Similarly to the previous
family, the goal of these operators is to measure the amount
of edges present in images, although through the second
derivative or Laplacian.
3.
 Wavelet-based operators (WAVn). The focus measure operators
within this family take advantage of the capability of the
coefficients of the discrete wavelet transform to describe the
frequency and spatial content of images. Therefore, these
coefficients can be utilized to measure the focus level.
4.
 Statistics-based operators (STAn). The focus measure operators
within this family take advantage of several image statistics as
texture descriptors in order to compute the focus level.
5.
 DCT-based operators (DCTn). Similarly to the wavelet-based
operators, this family takes advantage of the discrete cosine
transform (DCT) coefficients in order to compute the focus
level of an image from its frequency content. None of the
operators within this family have previously been used in SFF
applications to our knowledge.
6.
 Miscellaneous operators (MISn). This family groups operators
that do not belong to any of the previous five groups.
2.2. Scene reconstruction

Once a sequence of images is acquired at different focal
positions and the relative degree of focus is measured for all
their pixels using any of the focus measure operators described
above, the second stage in SFF applies a reconstruction scheme
that uses the focus information of those images in order to
estimate the depth of every point of the scene.

A widely used technique for this task was proposed by
Nayar [11] under the assumption of a Gaussian model of defocus
(see Section 3.1). For every pixel, the image with the highest focus
measure is identified and the depth corresponding to that pixel
estimated by interpolating a Gaussian function around this
position. In Fig. 2, the different focus measure values for a pixel
at coordinates (i, j) are shown for a focus sweep of 50 images. The
values Fm�1 and Fmþ1, as well as the maximum focus measure Fm,
are used to interpolate a Gaussian function. Pixel Iði,jÞ is assumed
to be located at the depth corresponding to the maximum of the
Gaussian. Alternatively, quadratic and polynomial fits have also
been proposed [12].

Focus measure operators often work under the so-called
isoplanatic assumption, by approximating the imaged surface
around each pixel as a planar patch. Some researchers have
further improved the obtained depth-map by means of recon-
struction techniques that take into account the continuous nature
of the imaged scene, without the isoplanatic restriction [12]. The
proposed techniques include surface fitting and optimization by
neural networks [13], and dynamic programming [14,15], among
others (e.g., [16–18]). This work aims at focus measure operators.
Therefore, a simple Gaussian interpolation technique has been
applied in order to obtain the final depth-maps.
3. Methodology

The focus measure operators introduced in the previous
section have been applied to sequences of both synthetic and
real images in order to obtain the depth-maps of different scenes.
The results have been evaluated by applying a quality measure to
those maps. In order to assess the robustness of the focus
measure operators, the evaluation procedure has been repeated
under different factors: noise level, size of the evaluation window,
image contrast and saturation. In this section, the image set used
to test the focus measure operators is first described, emphasizing
on the generation of the synthetic images. Afterwards, the
evaluation procedure utilized to compare the accuracy of the
obtained depth-maps is presented. Finally, the methodology to
assess the robustness to noise, contrast, saturation and window
size is described.
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Table 1
Abbreviations of focus measure operators.

Focus operator Abbr. Focus operator Abbr.

Gradient energy GRA2 Gray-level variance STA3

Gaussian derivative GRA1 Gray-level local variance STA4
Thresholded absolute gradient GRA3 Normalized gray-level variance STA5

Squared gradient GRA4 Modified gray-level variance STA6
3D gradient GRA5 Histogram entropy STA7

Tenengrad GRA6 Histogram range STA8

Tenengrad variance GRA7 DCT energy ratio DCT1
Energy of Laplacian LAP1 DCT reduced energy ratio DCT2
Modified Laplacian LAP2 Modified DCT DCT3
Diagonal Laplacian LAP3 Absolute central moment MIS1
Variance of Laplacian LAP4 Brenner’s measure MIS2
Laplacian in 3D window LAP5 Image contrast MIS3
Sum of wavelet coefficients WAV1 Image curvature MIS4
Variance of wavelet coefficients WAV2 Hemli and Scherer’s mean MIS5
Ratio of the wavelet coefficients WAV3 Local binary patterns-based MIS6
Ratio of curvelet coefficients WAV4 Steerable filters-based MIS7
Chebyshev moments-based STA1 Spatial frequency measure MIS8
Eigenvalues-based STA2 Vollath’s autocorrelation MIS9
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Fig. 2. Gaussian interpolation for depth estimation.
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3.1. Image sequences

A set of 12 image sequences has been used to test the
performance of the different focus measure operators introduced
in Section 2. As described in Table 2, this test set has been divided
into three groups. The first two groups correspond to image
sequences captured with commercial cameras, whereas the third
group contains sequences generated synthetically (Fig. 3)1. The
procedure to generate those synthetic sequences is described below.

A defocused image is often considered in the literature to be a
filtered version of a focused one. Thus, a defocused image, Id, can
be described as the convolution of the focused one, I, with a
blurring function h

Id ¼ Inh: ð1Þ

Function h is referred to as a Point Spread Function (PSF), since
it is the response of the camera to a unit point source [19]. In
diffraction limited optics with incoherent illumination, the PSF
can be simplified as a Gaussian [19–21]

hða,bÞ ¼
1

2ps2
h

exp �
a2þb2

2sh

 !
, ð2Þ
1 Further details on the real scenes can be found at http://www.sayonics.com/

research/focus_measure.html.
where sh is assumed to be proportional to the degree of defocus
of the image.

Pentland [22] derived an expression that relates the blur
parameter sh in (2) and the depth of the scene point u. This
expression can be rewritten for every pixel Iðx,yÞ as

shðx,yÞ ¼
k
A

f 29u�uf 9
uðuf�f Þ

, ð3Þ

where uf is the in-focus position for a given camera setting (the
distance at which the scene point should be placed in order to be
focused), k is a constant that depends on the camera, and A is the
f-number of the lens.2 However, the convolution in (1) is only
valid under the assumption of a spatially invariant blurring
function within the evaluation window (isoplanatism) [23,24].
Therefore, in order to avoid the isoplanatism assumption for the
synthetic data used in this work, a blurred image Bx,y is obtained
for every scene point at coordinates (x, y) by convolving it with its
corresponding PSF

Bx,y ¼ Iðx,yÞnhx,y, ð4Þ

where the sub-index of hx,y denotes the PSF corresponding to
pixel Iðx,yÞ according to its depth. In turn, the defocused image for
the pixel located at ðx0,y0Þ given a W�H image is obtained by
summing up the contributions of every defocused point

Idðx0,y0Þ ¼
XW�1

i ¼ 0

XH�1

j ¼ 0

Bi,jði�x0,j�y0Þ: ð5Þ

In the above equations, however, since every point is linearly
convolved with its corresponding PSF, the overall processing is
non-linear and allows the definition of a shift-variant PSF. In
addition, the computation time can be reduced by taking into
account that not all of the blurred images Bx,y must be considered
in (5), since the radiance of every depicted point spreads over a
small image area depending on the value of its corresponding sh

(i.e., the values of hx,y can be neglected for pixel coordinates
beyond 2:5sh away from ðx0,y0Þ). Therefore, the sum in (5) can be
limited to those pixels that fulfill

ðx�x0Þ
2
þðy�y0Þ

2r6:25s2
hðx,yÞ: ð6Þ
2 The f-number is computed from the focal length, f, and the lens diameter, d,

as the ratio f/ d.

http://www.sayonics.com/research/focus_measure.html
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Fig. 3. All-in-focus images for each sequence of the test set. Top row: sequences from the Logitech camera; second row: sequences from the Sony camera; third row:

simulated sequences.

Table 2
Image sequences.

Source Sequences Description

Logitech Orbit

AF camera

4 sequences. 51 images of 640�480

pixels per sequence

Images acquired with an off-the-shelf webcam with controllable focus. Focus sweep between 11.9 mm and

81.0 mm away from the camera

Sony SNC-

RZ50P camera

4 sequences. 50 images of 640�480

pixels per sequence

Images acquired with a controllable zoom-focus camera (PTZ). The focus sweep was performed at maximum

focal length to obtain minimum depth-of-field. For all scenes, the imaged objects are within a distance range

of 36.8 cm and the focus sweep was performed in a range of 1880 mm around that distance

Synthetic

images

4 sequences. 25 images of 626�626

pixels per sequence

Defocus simulated for a 3.3 mm focal length camera, focusing between 50 mm and 200 mm. For all scenes,

the imaged surface is between 100 mm and 150 mm away from the simulated camera

3 No special preference is given to any of these operators. They were selected

due to their similarity in both definition and performance.
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In this work, all simulated sequences consist of 25 images of
640�640 pixels. The textures mapped on the synthetic surfaces
were selected in order to cope with a variety of features and
intensities.

3.2. Evaluation procedure

In order to compare the performance of different focus
measure operators for SFF, a measure to evaluate the quality of
the obtained depth-maps must be utilized. In this paper, the
inverse of the root mean square error (RMSE) has been used as a
quality measure Q computed for W�H images by considering
both the ground-truth GT and the estimated depth-map Z as

Q ¼ 1=RMSE, ð7Þ

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

WH

X
ði,jÞ

ðGT ði,jÞ�Zði,jÞÞ2

vuut : ð8Þ

The larger Q, the higher the quality of the considered focus
measure operator. In addition, the universal quality index (UQI)
originally proposed in [25] has also been used. This index
measures the distortions between Z and GT in the range ½�1,1�.
The best value 1 is achieved when the estimated depth-map and
the ground-truth match perfectly. The UQI is evaluated locally
and averaged over the whole image. This index is computed for
two local regions z and g from the estimated depth-map and the
ground-truth, respectively

UQIðz,gÞ ¼
4szgg z

ðs2
z þs2

g Þðz
2
þg2
Þ
, ð9Þ
where z and g are the means, and sz, sg and szg the variances and
covariance of z and g, respectively.

The quality measure Q is sensitive to both local and global
differences between the ground-truth and the actual depth-map.
However, this measure has an important drawback: since the
value of the RMSE is not normalized and depends on the units of
the compared variables, the measures obtained for a given image
sequence cannot be directly compared to those of another image
sequence (with different scene characteristics, distance range,
etc.). To overcome this problem, the evaluation of every focus
operator for each sequence is normalized by the maximum
evaluation achieved by any of the operators in that sequence.
This relative quality measure Qr has the advantage that its value
only depends on the relative performance of the compared
operators, thus being independent of the scales and units of both
the ground-truth and the obtained depth-maps.

For illustration purposes, Table 3(a) and (b) shows the evalua-
tion procedure for two different image sequences. For the sake of
clarity, only the last three operators in Appendix A have been
shown in these tables.3

Table 3(a) corresponds to an image sequence obtained with
the Logitech webcam, whereas Table 3(b) corresponds to the Sony
SNC-RZ50P PTZ camera. It can be clearly appreciated that the
RMSE values obtained by the operators differ in at least one order
of magnitude between both sequences. For instance, the WAV1
operator yielded an RMSE of 1.8 mm/pixel for the first sequence,
and 51 mm/pixel for the second. This is not unexpected, since the



Table 3
Evaluation procedure.

Operator RMSE (mm/pixel) Q Qr

(a) Sequence A

WAV1 1.8 0.568 1.000

WAV2 2.1 0.471 0.830

WAV3 2.1 0.462 0.815

(b) Sequence B

WAV1 51.1 0.019 1.000

WAV2 56.9 0.017 0.898

WAV3 54.5 0.018 0.938
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first sequence corresponds to a focus sweep of 69 mm, whereas
the second sequence corresponds to a sweep of 1880 mm. There-
fore, such a difference in the scales and conditions of the
experiments could lead to an erroneous interpretation of the
results. In contrast, the values in the third column of both tables
Qr are dimensionless, although they clearly differentiate the
relative performance of the different focus operators.

In the field of autofocus, the sequence of focus measure values
of a focus sweep is usually referred to as focus function. Several
features of that function have been proposed and applied in order
to compare and rank different FM operators [4,7,8,26]. For
instance, FM operators were ranked in [4] according to four
features of the focus function: accuracy (deviation of the focus
position from its correct value), range (height of the focus
function), number of false maxima and width (measured at 50%
of its peak value). These criteria were selected under the assump-
tion that, for an automated focusing algorithm to work appro-
priately, the focus function should be monotonically decreasing as
the distance from the focal plane increases, should not have any
phase reversals or local maxima (or false maxima), and should
come to a sharp peak at the position of best focus. Santos et al. [7]
complemented this methodology by also considering the execution

time among the key features of the focus measure operator. In [8]
and [26], an extensive evaluation of several focus measure opera-
tors using an approach similar to [4] and [7] was carried out, but
additionally including the noise level (energy of the local maxima)
and the resolution (global distribution of the focus function)
among the features of the focus function.

Although the aforementioned features of the focus function have
successfully been utilized for assessing the quality of FM operators
in autofocus applications, their usefulness for SFF is rather limited.
In autofocus, these features are important since they directly affect
the speed and accuracy of the focusing process. In contrast, the main
performance measure in SFF is the reconstruction error (often
measured in terms of the RMSE). In order to support this argument,
the following experiment has been carried out: for each FM
operator, a sample of five hundred point locations on a real focus
sequence were randomly selected and the features corresponding to
those positions computed, namely: the accuracy (Acc), range (Ran),
width (W), false maxima (Fmax), the resolution (Res) and noise level
(NLev); as well as the proposed relative quality measure Qr and the
reconstruction error (RMSE). Table 4 shows the Spearman’s rank
correlation coefficients of those variables with respect to the
reconstruction error with a significance level po0:1.

From Table 4, it is evident that the proposed quality measure Qr

is strongly correlated with the quality of the reconstruction in terms
of the reconstruction error, with the advantage of being independent
of the units and particular characteristics of each experiment.

3.3. Robustness of focus measure operators

The performance of the evaluated focus measure operators has
been assessed by taking into account the effect of four different
features: image contrast, image saturation, image noise and the
size of the neighborhood Oði,jÞ used to evaluate each operator, as
described below.

3.3.1. Sensitivity to window size

In SFF, a focus measure operator is applied to each image pixel
by processing a small neighborhood or evaluation window around
it. The nature and amount of image information and, hence, the
size of the neighborhood used to apply the focus measure
operator can strongly affect the performance of a focus measure.
Malik et al. [10] addressed the problem of determining the
optimum window size for the application of focus measures for
shape recovery. Malik et al. observed that increasing the window
size can lead to an erroneous estimation of depth due to over-
smoothing effects. On the other hand, as noted in [27], small
windows increase the sensitivity to noise and to the problem of
image occlusion blur [27–29].

In order to evaluate the effect of the window size on the
performance of the focus measure operators, five different win-
dow sizes have been considered: 21�21, 17�17, 13�13, 9�9,
and 5�5.

3.3.2. Robustness to noise

This feature measures the performance of a focus measure
operator when the latter is affected by the presence of image
noise. A CCD camera has several primary noise sources, such as
fixed pattern noise, dark current noise, shot noise, amplifier noise and
quantization noise [30], which can be grouped into both
irradiance-dependent and irradiance-independent sources. In that
way, a noisy image In can be modeled as [31]

In ¼ f ðIþnsþncÞþnq, ð10Þ

where I is the original image, f ð�Þ is the camera response function
(CRF), ns is the irradiance-dependent noise component, nc is the
independent noise, and nq is the additional quantization and
amplification noise. According to [31], nq is neglected, ns and nc

are assumed to have zero mean and variances VarðnsÞ ¼ I � s2
s and

VarðncÞ ¼ s2
c , respectively.

All focus measure operators have been evaluated with five
different noise levels, assuming an identity function for the CRF
used in (10) (see Table 6).

3.3.3. Sensitivity to image contrast

Image contrast is another feature related to the image content
that can affect the performance of a focus measure operator. Low
contrast images usually contain smooth edges, thus increasing
the difficulty to determine the relative degree of focus. Moreover,
operators with high sensitivity to image contrast will exhibit a
variable behavior over the image field in the presence of image
aberrations such as vignetting [32]. In order to assess the robust-
ness of the different operators to reductions of image contrast, the
experiments have been repeated by pre-processing the image
sequences in order to reduce their contrast. In particular, for every
image sequence, contrast was reduced by compressing their
histograms through the following histogram equalization transfer
function:

Icðx,yÞ ¼ cðIðx,yÞ�128Þþ128, ð11Þ

where Icðx,yÞ is the new image intensity of pixel Iðx,yÞ and c is the
histogram compression ratio. This equation allows for a linear
compression of the image histogram around its center for gray-
levels between 0 and 255. In (11), the slope c of the transfer
function is reduced in order to decrease the contrast of the image.
This operation must be performed in unsigned integer format to
achieve a real compression of the histogram instead of a simple
scaling.



Table 4
Spearman’s correlation r of quality measures with respect to the RMSE.

Measure Acc Fmax NLev W Q r

r �0.52 0.38 0.32 0.40 �1.0

Table 5
Average computation time, t, of evaluated focus measure operators for all the

considered image sequences.

Method t (ms) Method t (ms) Method t (ms)

GRA3 5.60 MIS9 11.0 WAV2 88.00

GRA4 5.90 MIS8 12.0 GRA5 111.0

MIS9 6.00 GRA1 15.0 WAV3 125.0

DCT3 6.30 LAP4 15.0 LAP5 173.0

MIS2 7.10 MIS4 17.0 STA7 388.7

LAP1 7.10 STA8 17.1 MIS6 540.0

LAP2 7.20 STA3 18.0 STA1 6490

GRA2 7.30 STA4 18.0 STA2 6770

GRA6 9.70 GRA7 18.0 DCT2 8640

STA5 10.0 MIS7 22.0 DCT1 8830

LAP3 10.0 STA4 26.0 MIS1 10100

MIS5 10.7 WAV1 55.0 MIS3 12480
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3.3.4. Sensitivity to image saturation

Image saturation can also affect the performance of focus
measure operators. In this work, image saturation has been
evaluated by adding a constant offset to the original image

Isðx,yÞ ¼ Iðx,yÞþS, ð12Þ

where Isðx,yÞ is the saturated pixel at coordinates (x, y) and S is the
saturation level. The values of S are between 0 and 128 in order to
obtain a saturation level from 0% to 50%. Again, it is assumed that
image gray levels are coded in unsigned integer format and values
above 255 are set to 255.
4 In this work, the reduction of spatial resolution did not lead to greater errors

probably since the reconstructed scenes mostly consist of planar patches.
4. Results

4.1. Overall performance

All the evaluated focus measure operators have been imple-
mented in MATLAB and applied to the image sequences described
in Section 3.1. Table 5 summarizes the mean computational time
obtained for every focus operator for 640�480 images on a
Pentium IV quad core at 2.5 GHz. For comparison purposes, all
focus operators have been implemented and tested in equal
terms. However, the performance of some operators highly
depends on their particular application. For instance, the DCT-
based operators were originally proposed to exploit the informa-
tion inherent to some video and image formats.

Regarding the reconstruction accuracy, when the focus mea-
sure operators are applied to different image sequences within
the same group (e.g., the image sequences from the Sony camera),
similar rankings are obtained with respect to their quality
measures, Qr. However, sequences from different groups lead to
different rankings. For instance, Fig. 4(a) and (b) compares the
ground-truth with the obtained depth map for different
sequences from the test set. In Fig. 4, it is evident that changes
in the imaging device lead to different quality levels of the
obtained reconstruction. This is reasonable if the characteristics
of every image group are considered: On the one hand, the
sequences from the synthetic set represent an ideal defocus,
without noise or optical artifacts. On the other hand, the
sequences obtained with the Logitech camera have the highest
effects of noise, radial distortion, image field curvature and
vignetting due to the lower quality of the camera’s optics.

The difference in quality, content and nature of the acquired
images can favor some operators while being detrimental to
others according to their sensitivity to these factors. Therefore,
the results from different image groups are presented separately.
Thus, Fig. 5 ranks the focus measure operators according to the
mean Qn obtained for every group of sequences.

The results presented in Fig. 5 show that the overall ranking of
focus measure operators is strongly related to the imaging device
and the scene. Thus, it is difficult to determine what operator or
group of operators will perform better under any imaging condi-
tion. This can be explained by considering that each combination
of variables, such as the imaging device and the real scene under
observation, represent a different scenario in terms of contrast,
noise, saturation, etc. Therefore, a given focus measure operator
will perform worse or better than others according to its sensi-
tivity to the aforementioned factors. In addition, as shown in
the next section, the size of the evaluation window also affects
the relative performance of focus measure operators. Notwith-
standing, some trends can be observed, such as some operators
that generally exhibit a good performance in all cases (e.g., WAV1,
LAP2) or others that yield the worst performance in general (e.g.,
MIS1, MIS5, MIS6).

4.2. Robustness of focus measure operators

In order to assess the robustness of the evaluated focus
measure operators to image noise, contrast, saturation and size
of the operator’s window, several operators have been pre-
selected based on their overall performance. Thus, only the eleven
focus measure operators that appear within the top 15 in all the
rankings shown in Fig. 5 (STA2, STA3, STA8, LAP2, LAP3, LAP4,
LAP5, GRA7, WAV1, WAV2 and WAV3) have been considered. The
parameters of the different tests are shown in Table 6. The pre-
selected operators are mainly based on four different concepts:
the image Laplacian (LAP2, LAP3 and LAP5), image statistics
(STA2, STA3 and STA8), image gradient (GRA7) and the discrete
wavelet transform (WAV1, WAV2 and WAV3). As will be shown
in the following sections, operators based on similar concepts
exhibit a comparable response to changes in image conditions.

The conducted experiments show that the family of Laplacian-
based operators have the best overall performance at normal
imaging conditions (i.e., without addition of noise, contrast
reduction or image saturation). The image Laplacian is a discrete
approximation of the second derivative of the image and high-
lights regions with rapid changes in intensities. This makes it
suitable for detecting changes in focus. These results are in
agreement with [6] for autofocus applications, and [9] for SFF.
In contrast, Sun et al. [8] found that statistics-based methods have
a better performance for autofocus.

4.2.1. Sensitivity to window size

In general, the performance of all focus measure operators
decreases for small evaluation windows. For instance,
Fig. 6(a) shows the mean RMSE obtained by the different
operators for all the real sequences of the test set.

From Fig. 6(a), it is evident that, as the window size is reduced,
the RMSE increases. This is expected since the size of the
evaluation window directly affects the amount of texture and
image information that makes it possible to detect changes in
focus. However, as already noted by previous researchers, incre-
ments in the window size yield a reduction of spatial resolution.4
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Malik and Choi [10] tackled the problem of finding the optimum
window size for SFF. In particular, they pointed out that increas-
ing the window size yields a reduction of the quality of the
reconstruction by excessively smoothing the depth-map. There-
fore, the optimum window size for a particular application must
be a trade-off between spatial resolution and robustness to the
lack of texture. In this section, the effect of the window size on the
relative performance of focus measure operators according to
their working principle is assessed.

In order to compare the influence of the window size,
Fig. 6(b) shows the mean of the normalized quality measure Qn

for all the analyzed focus measure operators. The results indicate
that the differences between the Laplacian-based and statistics-
based operators tend to decrease as the size of the evaluation
window is reduced. On the other hand, the gradient-based
operator, GRA7, is the operator most affected by the reduction
of window size. In contrast, the performance of the wavelet-based
operators shows a significant improvement. This result is sig-
nificant since wavelet-based operators have not been applied to
SFF in the literature.

From the tests described in this section and throughout this
work, it is possible to observe that focus measure operators based
on similar concepts respond similarly to variations in the imaging
conditions. Therefore, it is easier and more meaningful to under-
stand the behavior of the various families of focus measure
operators instead of each operator on its own.5 In this way,
Fig. 7 shows the mean performance of each family of focus
measure operators after averaging the quality measures obtained
by the operators within the same family for each window size.

Fig. 7 confirms that wavelet-based operators perform better
for small evaluation windows, whereas gradient-based operators
are the most sensitive to this feature. The wavelet decomposition
of an image can be interpreted as a simultaneous frequency and
scale-space analysis where the detail sub-bands are related to the
highest frequencies of the image [33]. This fact has previously
been exploited in the field of autofocus for the definition of focus
measure operators, in image fusion for the computation of all-in-
focus images [34,35] and in image compression for the JPEG2000
standard [36]. According to the theory of defocus, changes in
focus mostly affect the high frequency components of the image.
This explains why wavelet-based operators improve their relative
5 Individualized performance of the pre-selected focus measure operators can

be found at http://www.sayonics.com/research/focus_measure.html.
performance as the window size decreases. Actually for small
windows, the change in focus can successfully be detected at the
coefficients of the low scale sub-bands of the DWT. For instance,
Fig. 8 compares the depth-maps obtained using a wavelet-based
operator (WAV1) against those generated with a Laplacian-based
operator (LAP2) for different window sizes. It is evident that, their
performance is comparable for the largest window. However, as
the size decreases, the response of the Laplacian-based operator
quickly deteriorates, while the wavelet-based operator responds
more robustly. The sequence used to generate the depth-maps of
Figs. 8 and 11 corresponds to the right-most synthetic sequence
of Fig. 4.

It is also important to remark that, for a certain evaluation
window size, the ranking (i.e., the quality measure) of operators
may vary depending upon the image set used to perform the tests.
Thus, the ranking for a given window size will differ if the
sequences from the Sony camera, the Logitech camera or both
are used. However, the overall behavior of the different operators
is independent of the image sequences used to perform the tests.
For example, Fig. 9 compares the mean quality measures obtained
by the analyzed families for the sequences acquired with the
Logitech camera and the Sony camera, respectively.

By comparing Fig. 9(a) and (b), it is evident that, for a given
window size, the families of focus measure operators may be
sorted differently depending on the acquisition device. However,
they have a similar overall behavior. This reasoning is followed for
the tests described in the next sections. For the sake of brevity,
the results corresponding to sequences from both cameras
are shown.
4.2.2. Robustness to noise

As described in Section 3.3.2, the robustness to noise of the
focus measure operators has been assessed by performing 3D
reconstructions under five different noise levels (see Table 6). The
results are summarized in Fig. 10. In these experiments, image
noise was one of the factors that most affected the performance of
all operators, with all the measured RMSE increasing with the
amount of noise level.

It is important to note that statistics-based operators have the
highest robustness to noise, with the STA2 operator being the
best. In fact, from noise levels 3–5, statistics-based operators are
the ones with the best accuracy. The gradient-based operator,
GRA7, also shows a good response to noise, qualifying in the
second place for the highest noise level. On the other hand,

http://www.sayonics.com/research/focus_measure.html


Fig. 5. Ranking of focus measure operators according to the relative quality Qr (vertical axis) for different groups of image sequences. (a) Synthetic sequences. (b) Logitech’s

sequences. (c) Sony’s sequences.

Table 6
Robustness of focus measure operators.

Level Window size (pixels) Noise sc ¼ss Contrast (%) Saturation (%)

Lv1 21�21 0.00050 80.0 10

Lv2 17�17 0.00176 62.5 20

Lv3 13�13 0.00320 45.0 30

Lv4 9�9 0.00429 27.5 40

Lv5 5�5 0.00555 10.0 50
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Laplacian-based operators, which exhibit the best performance at
low noise levels (level 1 and 2), are the most sensitive to noise,
showing the greatest reduction in their quality measure.

The sensitivity to image noise of Laplacian-based operators is
a well known fact and the robustness of statistics-based opera-
tors is in agreement with the prior knowledge. On the one hand,
low-order statistical moments are theoretically expected to have
a low correlation with the high-frequency components of noise.
Therefore, according to the properties of linear functions of
random variables [37], variance-based operators will detect
focus accurately provided that the variance of noise is below
the one of the signal (intensity values). For the particular case of
the eigenvalues-based operator (STA2), the optimal dimensionality
reduction property of principal component analysis (PCA) will
provide this operator with a good robustness to noise as long
as the noise energy is below the total energy of the data in the
neighborhood of a pixel [38]. This can explain the robustness
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Fig. 7. Quality measures for different families of operators and different window sizes. (a) RMSE. (b) Universal quality index. (c) Relative quality. X-axis: window size.
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of statistics-based operators to image noise. In contrast,
Laplacian-based operators are the most sensitive to noise
since it is well known that second derivatives are very
sensitive to it [39]. For instance, Fig. 11 compares the depth-
maps obtained using a statistical-based operator (STA3)
against those generated with a Laplacian-based operator
(LAP5). It is evident that the Laplacian-based operator has a
better performance for the lowest noise level. However, as the
noise level increases, its performance quickly deteriorates
with respect to the statistical-based operator.

In addition, wavelet-based operators also have a high sensi-
tivity to noise. This can be explained by the fact that image noise
mostly corresponds to high-frequency components. Therefore, it
is likely to have an impact on the coefficients of the detail sub-
bands of the DWT. In fact, in the literature related to image
denoising, noise is often suppressed by thresholding the coefficients



Fig. 8. Depth-maps obtained with SFF using WAV1 (top row) and LAP2 (bottom row) for different window sizes (7�7, 5�5 and 3�3, from left to right). These depth-

maps correspond to the ground-truth shown in Fig. 4(a). Z-axis: pixel depth (mm). (a) Qr¼1.00, (b) Qr¼0.99, (c) Qr¼0.98, (d) Qr¼0.96, (e) Qr¼0.60, and (f) Qr¼0.26.
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Fig. 9. Performance for different acquisition devices. (a) Logitech camera. (b) Sony camera. X-axis: window size.
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of the DWT sub-bands [40]. Thus, the focus measure will deteriorate
due to the effects of noise on these sub-bands.
4.2.3. Sensitivity to image contrast

The experiments in this section show that the effects of
contrast on the performance of focus measure operators are
marginal, only with a slight increase in the RMSE of the obtained
depth-maps, even for contrast levels reduced up to 10%. More-
over, the relative performance of the focus measure operators
remains almost unaltered for the different contrast levels. The
results of the evaluation of focus measure operators for different
contrasts are summarized in Fig. 12. From them, it can be
concluded that contrast affects all the compared operators simi-
larly, since their relative performance almost remains unchanged.
4.2.4. Sensitivity to image saturation

As can be observed in Fig. 13, the performance of focus
measure operators remains unaltered for saturations below 30%.
In general, all operators decrease their performance as the
saturation level is high, but this behavior is more evident for
saturation levels above 30% (Lv3). This can be explained by the
fact that, for the imaging conditions of the captured sequences,
the upper bounds of the image histogram only contain a small
percentage of the total energy. Therefore, low saturation levels
only affect a small fraction of image pixels. Thus, the effect of
saturation is only significant above 30%. Above this threshold
both Qr and UQI indicate that Laplacian-based operators have the
highest sensitivity to saturation, as can be appreciated in Fig. 13.

In general, features such as image contrast and saturation
affect all the analyzed operators similarly. A difference in the
relative performance of some operators can only be observed at
high levels of contrast and the increment of saturation. Both, the
reduction in image contrast and the increment of saturation can
be thought of as a reduction in the pixel depth or, in terms of
image intensities, as a reduction in the number of gray levels. In
this work, all the focus measure operators have been implemen-
ted in double-precision arithmetic. Therefore, no quantization or
overflow problems arise in the computations independently of
the operations performed by each focus measure operator.
5. Conclusions

Focus measure operators are a fundamental part of 3D scene
reconstruction through shape-from-focus. In this work, a metho-
dology to compare the performance of several focus measure
operators has been proposed and tested. The selected operators
have been chosen from an extensive review of up-to-date litera-
ture. Since some of them were originally proposed for autofocus
applications, it has been necessary to adapt them in order to be
applicable to SFF. Experiments have been carried out on a test set
constituted by both synthetic and real image sequences. Synthetic
sequences were generated based on a non-linear shift-variant
computation of defocus.
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Fig. 10. Quality measures for different families of operators and noise levels. (a) RMSE. (b) Universal quality index. (c) Relative quality.

Fig. 11. Depth-maps obtained with SFF using STA3 (top row) and LAP5 (bottom row) with a 7�7 window and increasing noise levels (Lv0, Lv1 and Lv2). These depth-

maps correspond to the ground-truth shown in Fig. 4(a). Z-axis: pixel depth (mm). (a) Qr¼0.21, (b) Qr¼0.17, (c) Qr¼0.16, (d) Qr¼1.00, (e) Qr¼0.15, and (f) Qr¼0.11.
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The analyzed focus measure operators are based on different
mathematical principles. From an initial group of 36 operators,
the best 11 operators have been chosen in order to compare
their performance under different imaging conditions.
The selected group includes algorithms based on the image
Laplacian, image statistics, the image gradient and the wavelet
transform.

Experiments have shown that Laplacian-based operators have
the best overall performance at normal imaging conditions (i.e.,
without addition of noise, contrast reduction or image satura-
tion). However, it is difficult to determine which focus measure
operators have the best performance for specific imaging condi-
tions (i.e., a given noise level, contrast, saturation and window
size), since this strongly depends on the particular capturing
device with which the image sequences are acquired. Notwith-
standing, the overall behavior of the different operators is
independent of the capturing device and they respond similarly
to changes in noise, contrast, saturation and window size even for
different devices. Moreover, experiments have also shown that
operators belonging to the same family, which are thus based on
similar principles, have a similar response to changes in the
imaging conditions.

In summary, the results presented in this work provide an
insight on how different imaging conditions can affect the
different families of focus measure operators. Moreover, the
group of best operators for SFF has been identified, which can
be useful for future development of new focus measure operators
and reconstruction schemes in this particular field.

The texture content is an important factor that influences the
performance of SFF [41–43]. However, the problem of identifying
what texture families and what texture features are relevant for
focus detection still needs to be assessed. Future work will focus
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Fig. 12. Quality measures for different families of operators and contrast levels. (a) RMSE. (b) Universal quality index. (c) Relative quality.
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Fig. 13. Quality measures for different families of operators and saturation levels. (a) RMSE. (b) Universal quality index. (c) Relative quality.
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on the application of SFF to complex scenes, where changes in
characteristics such as the texture content may occur over the
same scene. The aim is to study the response of the analyzed
focus measure operators to different families of microtextures,
such as the ones previously proposed in [44]. In addition, the
present work will be expanded by incorporating new published
focus measure operators, such as the ones in [45–47].
Appendix A. Focus measure operators

This appendix summarizes the focus measure operators eval-
uated in this work. Some operators have not been previously used
in the field of SFF and have been adapted from AF applications for
this work. For homogeneity, the original notation used by some
authors has been adapted.
A.1. Absolute central moment (MIS1)

Shirvaikar et al. [48] proposed a focus measure for AF, the
absolute central moment (ACMo), based on statistical measures and
the image histogram H

ACMo¼
XL

k ¼ 1

9k�m9Pk, ðA:1Þ
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where m is the mean intensity value of H, L the number of gray-
levels in the image and Pk the relative frequency of the k-th gray-
level. This operator has been adapted to SFF by accumulating the
values of ACMo computed over the neighborhood Oðx,yÞ of pixel
Iðx,yÞ.
A.2. Brenner’s focus measure (MIS2)

A focus measure based on the second difference of the image
gray-levels of an image I is defined as [4,7,8]

f¼
X
ði,jÞ

9Iði,jÞ�Iðiþ2,jÞ92
: ðA:2Þ

A variation in (A.2) also allows taking into account the vertical
variations of the image [7]. In addition, the values above a given
threshold can only be accumulated [7,8]. This measure can be
adapted to SFF if the focus measure for every pixel Iðx,yÞ is
computed by limiting the sum in (A.2) to its local neighborhood
Oðx,yÞ.
A.3. Image contrast (MIS3)

Nanda et al. [49] used the image contrast as a focus measure
for autofocus

Cðx,yÞ ¼
Xxþ1

i ¼ x�1

Xyþ1

j ¼ y�1

9Iðx,yÞ�Iði,jÞ9, ðA:3Þ

where Cðx,yÞ is the image contrast for pixel Iðx,yÞ. This operator
can be adapted to SFF if the contrast is accumulated over the
pixel’s neighborhood

fx,y ¼
X

ði,jÞAOðx,yÞ

Cði,jÞ, ðA:4Þ
A.4. Image curvature measure (MIS4)

This operator was proposed in [50] for SFF applied to micro-
scopy. If the image gray-levels are interpolated by means of a
surface, the curvature of this surface may be used as a focus
measure [50,51]

f¼ 9c09þ9c19þ9c29þ9c39, ðA:5Þ

where C ¼ ðc0,c1,c2,c3Þ
T is the vector of coefficients used to

interpolate a quadratic surface f ðx,yÞ ¼ c0xþc1yþc2x2þc3y2. C is
computed through least squares by applying two convolution
masks [50]

c0 ¼M1nI c2 ¼
3

2
M2nI�MT

2nI

c1 ¼MT
1nI c3 ¼

3

2
MT

2nI�M2nIrevx,

where

M1 ¼
1

6

�1 0 1

�1 0 1

�1 0 1

0
B@

1
CA M2 ¼

1

5

1 0 1

1 0 1

1 0 1

0
B@

1
CA:
A.5. Helmli and Scherer’s mean method (MIS5)

Helmli and Scherer [50] proposed to measure the local
contrast by computing the ratio, Rðx,yÞ, between the intensity
level of every pixel Iðx,yÞ and the mean gray level of its
neighborhood mðx,yÞ

Rðx,yÞ ¼

mðx,yÞ

Iðx,yÞ
, mðx,yÞZ Iðx,yÞ

Iðx,yÞ

mðx,yÞ
otherwise:

8>>><
>>>:

ðA:6Þ

This ratio is one if there is either a constant gray value or low
contrast. An M�N neighborhood centered at (x, y) is used to
compute mðx,yÞ. The focus measure for Iðx,yÞ is computed by
summing the values of Rðx,yÞ within Oðx,yÞ.
A.6. Local binary patterns-based measure (MIS6)

Lorenzo et al. [52] studied the use of Local Binary Patterns
(LBPs) as a focus measure for autofocus applications. In order to
compute the LBP operator for a given pixel Iðx,yÞ, n pixels within a
radius R around (x, y) are selected [52]

LBPx,yðn,RÞ ¼
Xn

k ¼ 1

SðIk�Iðx,yÞÞ, ðA:7Þ

where Ik is the intensity level of the k-th pixel around (x, y) and
S(x) is

SðxÞ ¼
1 if xZ0

0 otherwise:

(
ðA:8Þ

The focus measure for pixel Iðx,yÞ is computed as

fx,y ¼
X

ði,jÞAOðx,yÞ

LBPi,jðn,RÞ: ðA:9Þ

Values of n¼8 and R¼2 have been used in the experiments of
the present paper.
A.7. Steerable filters-based measure (MIS7)

Minhas et al. [51] proposed a focus measure based on a filtered
version of the image If

fx,y ¼
X

ði,jÞAOðx,yÞ

If ði,jÞ, ðA:10Þ

If ði,jÞ is defined as

If ði,jÞ ¼maxfRy1

ði,jÞ,R
y2

ði,jÞ, . . . ,R
yN

ði,jÞg, ðA:11Þ

where Ryn , n¼ 1,2, . . . ,N is the image response to the n-th steer-
able filter defined as [53]

Ryn ¼ cosðynÞðInGxÞþsinðynÞðInGyÞ, ðA:12Þ

with Gx and Gy being the Gaussian derivatives (A.15).
Recently, an efficient algorithm for the computation of the

focus measure based on steerable filters by means of integral
images has been proposed in [54].
A.8. Spatial frequency measure (MIS8)

This operator was proposed in [55] for the fusion of multi-focal
images

fx,y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ði,jÞAOðx,yÞ

Ixði,jÞ
2
þ

X
ði,jÞAOðx,yÞ

Iyði,jÞ
2

s
, ðA:13Þ

where Ix and Iy denote the first derivatives of an image in the X

and Y direction, respectively.
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A.9. Vollath’s autocorrelation (MIS9)

A focus measure based on image autocorrelation was proposed
in [7,56] and [8] for autofocus. Its adaptation to SFF is straightforward

fx,y ¼
X

ði,jÞAOðx,yÞ

ðIði,jÞ � Iðiþ1,jÞ

�
X

ði,jÞAOðx,yÞ

Iði,jÞ � Iðiþ2,jÞ: ðA:14Þ

A.10. Gaussian derivative (GRA1)

Based on the defocus modeling, Geusebroek et al. [57] pro-
posed a focus measure for autofocus in microscopy based on the
first order Gaussian derivative [6,57]

f¼
X
ðx,yÞ

ðInGxÞ
2
þðInGyÞ

2, ðA:15Þ

where Gx and Gy are the x and y partial derivatives of the
Gaussian function Gðx,y,sÞ, respectively

Gðx,y,sÞ ¼ 1

2ps2
exp �

x2þy2

2s2

� �
: ðA:16Þ

In order to apply this measure to small neighborhoods in SFF,
the value of s in (A.16) must be computed accordingly. For the
results shown in this paper, the value of s was selected such that,
for a neighborhood of size W�W, a total of five s’s are contained
along W. The focus measure for a pixel Iðx,yÞ is computed by
applying (A.15) within its neighborhood, Oðx,yÞ.

A.11. Gradient energy (GRA2)

The sum of squares of the first derivative in the x and y

directions has also been proposed as a focus measure [19,55,58]

fx,y ¼
X

ði,jÞAOðx,yÞ

ðIxði,jÞ
2
þ Iyði,jÞ

2
Þ: ðA:17Þ

A.12. Thresholded absolute gradient (GRA3)

The first derivative of the image in the horizontal dimension is
a simple measure of its degree of focus

fx,y ¼
X

ði,jÞAOðx,yÞ

9Ixði,jÞ9, 9Ixði,jÞ9ZT : ðA:18Þ

The performance of this measure is affected by the selection of T.
For the sake of generality, no threshold has been considered in
this work. An alternative definition of this method considers both
vertical and horizontal image derivatives by either addition [59]
or selection of the maximum value [7].

A.13. Squared gradient (GRA4)

Instead of applying (A.18), the first derivative is squared in
order to increase the influence of larger gradients [7,8,55,60]. If
both vertical and horizontal derivatives are considered and added,
this measure is equivalent to the energy of the image gradient
(GRAE).

A.14. 3D gradient (GRA5)

Ahmad proposed in [61] the use of the 3D gradient as a focus
measure operator. In [61], the whole image sequence is stacked in
a single image volume Vðx,y,zÞ, where x and y denote the image
coordinates and z the image number. The magnitude of the 3D
gradient is given by

9rV9¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rV2

xþrV2
yþrV2

z

q
, ðA:19Þ

where the three components of the gradient are obtained by
convolving V with the 3�3�3 operator oriented in the x, y and z

direction, respectively. The focus measure at pixel Iði,jÞ for the k-
th image is computed as the sum of the 3D gradient in a small 2D
neighborhood, provided this gradient is greater than a threshold T

fx,y,k ¼
X

ði,jÞAOðx,yÞ

9rVði,j,kÞ9, 9rVði,j,kÞ9ZT: ðA:20Þ

A.15. Tenengrad (GRA6)

A popular focus measure based on the magnitude of image
gradient is defined as [7,8,19,28,50,51,55,58,59,62–69]

fx,y ¼
X

ði,jÞAOðx,yÞ

ðGxði,jÞ
2
þGyði,jÞ

2
Þ, ðA:21Þ

where Gx and Gy are the X and Y image gradients computed by
convolving the given image I with the Sobel operators.

A.16. Tenengrad variance (GRA7)

This operator uses the variance of the image gradient as a
focus measure. It was originally used for autofocus in [65], but can
also be applied to SFF

fx,y ¼
X

ði,jÞAOðx,yÞ

ðGði,jÞ�GÞ2, ðA:22Þ

where G is the mean value within Oðx,yÞ of the gradient magni-

tude, which is computed as: G¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

xþG2
y

q
.

A.17. Energy of Laplacian (LAP1)

The energy of the second derivative of the image has been
used as a focus measure for both autofocus [6,8,19,55,59,
63,64,66,67,69,70] and SFF [61]

fx,y ¼
X

ði,jÞAOðx,yÞ

DIði,jÞ2, ðA:23Þ

where DI is the image Laplacian obtained by convolving I with the
Laplacian mask.

A.18. Modified Laplacian (LAP2)

Nayar [11] proposed a focus measure based on an alternative
definition of the Laplacian

fðx,yÞ ¼
X

ði,jÞAOðx,yÞ

DmIði,jÞ, ðA:24Þ

where DmI is the modified Laplacian of I, computed as

DmI¼ 9InLX9þ9InLY 9: ðA:25Þ

The convolution masks used to compute the modified Laplacian
are

LX ¼ ½�1 2 �1�,

and LY ¼LT
X .

A.19. Diagonal Laplacian (LAP3)

Thelen et al. [71] also included vertical variations of the image
in order to compute the modified Laplacian of the image

DmI¼ 9InLX9þ9InLY 9þ9InLX19þ9InLX29, ðA:26Þ
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where LX and LY are defined as in (A.25), and LX1 and LX2 are
given by

LX1 ¼
1ffiffiffi
2
p

0 0 1

0 �2 0

1 0 0

2
64

3
75, LX2 ¼

1ffiffiffi
2
p

1 0 0

0 �2 0

0 0 1

2
64

3
75:

A.20. Variance of Laplacian (LAP4)

This measure utilizes the variance of the image Laplacian as a
focus measure for autofocus [65]. In SFF, this measure can be
defined as

fi,j ¼
X

ði,jÞAOðx,yÞ

ðDIði,jÞ�DIÞ2, ðA:27Þ

where DI is the mean value of the image Laplacian within Oðx,yÞ.

A.21. Laplacian in 3D window (LAP5)

An et al. [72] proposed the use of a 3D neighborhood for
accumulating the focus measure

fx,y,k ¼
Xkþ1

f ¼ k�1

X
ði,jÞAOðx,yÞ

9DMIf ði,jÞ9, ðA:28Þ

where DMIf is the modified Laplacian of the f-th image, computed
as in (A.25).

A.22. Chebyshev moments-based (STA1)

An image focus measure for AF based on Chebyshev moments
was proposed in [69] as the ratio between the energy of the high-
pass band and the energy of the low-pass band extracted from the
image by using the Chebyshev moments. In [69], this measure is
applied to a normalized image ~I and can be computed as

f¼
JHð~I; pÞJ

JLð~I; pÞJ
, ðA:29Þ

where JHð~I; pÞJ and JLð~I; pÞJ respectively denote the high-order
and low-order Chebyshev moments up to order p of the normal-
ized image ~I , which is computed as

~I ¼
IffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ði,jÞ½Iði,jÞ�
2

q : ðA:30Þ

Note that (A.29) and (A.30) must be applied to the whole
image in order to compute a single focus measure. Nevertheless,
this measure can be used in SFF by performing a sliding-block
operation within a neighborhood Oðx,yÞ and assigning the
obtained measure to its central pixel. However, this procedure
is expected to affect the performance of the operator for small
neighborhoods, since the kernels used to compute the Chebyshev
moments will lose their discriminating capability as the number
of points (window size) is decreased. Parameter p also determines
the sensitivity to the frequency components of the image.
According to [69] and [73], a value of p¼2 has been used in
this work.

A.23. Eigenvalues-based (STA2)

A sharpness measure of an image proposed in [67] is obtained
from the trace of the matrix of eigenvalues, L, of the image
covariance S. Thus, the variances of the principal components of
the image are used as a focus measure [67,73,74]

f¼ trace½Lk�, ðA:31Þ
where the trace of Lk is the sum of the first k diagonal elements of
L. k has been set to 5 in this work.

The image covariance S is

S¼
JJT

MN�1
, ðA:32Þ

where J is the normalized image in (A.30) after removing its mean
value: J¼ ~I�meanð~IÞ; and M�N is the size of the neighborhood.
pixel’s neighborhood. The trace of Lk is the sum of its first k

diagonal elements. This focus measure, originally proposed for a
whole image, can be applied to SFF in a sliding block-like fashion.
However, the computational cost is dramatically increased since
the normalization procedure in (A.30) is iterated for every pixel’s
neighborhood Oðx,yÞ.
A.24. Gray-level variance (STA3)

The variance of image gray-levels is one of the most popular
methods to compute the focus measure of an image. It has been
applied to both autofocus [4,7,8,19,55,59,62,64,66–70,75] and SFF
[50,51,58,72]

fx,y ¼
X

ði,jÞAOðx,yÞ

ðIði,jÞ�mÞ2, ðA:33Þ

where m is the mean gray-level of pixels within Oðx,yÞ.
A.25. Gray-level local variance (STA4)

Pech et al. [65] proposed the local variance of gray-levels as a
focus measure for autofocus of diatoms in brigthfield microscopy.
For its application to SFF, this operator is re-formulated as

fx,y ¼
X

ði,jÞAOðx,yÞ

ðLvði,jÞ�Lv Þ
2, ðA:34Þ

where Lvði,jÞ is computed as the variance of gray-levels within a
neighborhood of size wx �wy centered at (i, j). Lv is the mean
value of Lv. In this work, wx and wy have been chosen to coincide
with the size of Oðx,yÞ.
A.26. Normalized gray-level variance (STA5)

The gray-level variance can be compensated for differences in
the average image brightness among different images by normal-
izing the value of f in (A.33) by the mean gray-level value m
[7,8,63].
A.27. Modified gray-level variance (STA6)

The computation of the gray-level variance in (A.33) can be
thought of as a non-linear filtering of the image. An alternative
focus measure can be obtained if the mean value mðx,yÞ of every
pixel within its neighborhood Oðx,yÞ is computed

fx,y ¼
X

ði,jÞAOðx,yÞ

ðIði,jÞ�mði,jÞÞ2, ðA:35Þ

where mðx,yÞ is obtained through a linear convolution filter.
A.28. Histogram entropy (STA7)

Since a focused image is expected to have a higher information
content, the entropy and range of the image histogram can be
used to compute the focus measure. The histogram entropy
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operator is defined as [4,7,8,59,62,70]

f¼�
XL

k ¼ 1

Pk logðPkÞ, ðA:36Þ

where Pk is the relative frequency of the k-th gray-level.
In order to compute a focus value for a pixel at coordinates (x, y),

the image histogram used in (A.36) is obtained from the gray-level
values within Oðx,yÞ.
A.29. Histogram range (STA8)

The histogram range has been used as a focus measure for
autofocus [4,7,8]

f¼maxðk9H40Þ�minðk9H40Þ: ðA:37Þ

In this work, the histogram H is computed within every Oðx,yÞ.
A.30. DCT energy ratio (DCT1)

The discrete cosine transform (DCT) is now part of many image
and video encoding systems. As noted in [75], the sum of the AC
components of the DCT is equal to the variance of the image
intensity and can be used as a focus measure. Later, Shen and
Chen proposed in [66] the DC/AC ratio as a focus measure. Let Fu,v

be the DCT of an M�N sub-block of the image (typically,
M¼N¼8). The focus measure associated with this sub-block, fS,
can be computed as

fS ¼

PM�1
u ¼ 0

PN�1
v ¼ 0

ðu,vÞa ð0,0Þ

Fðu,vÞ2

F2
0,0

: ðA:38Þ

For SFF, the focus measure for a pixel Iðx,yÞ is computed by
accumulating the values of fS within its neighborhood Oðx,yÞ.
A.31. DCT reduced energy ratio (DCT2)

Lee et al. [63] applied the DCT to 8�8 image sub-blocks in
order to measure focus. They suggested that the computation
time and robustness to noise of the energy ratio measure in (A.38)
can be improved if only 5 out of the 63 AC coefficients are used to
compute the AC energy. Thus, the focus measure is defined as

f¼
F2

0,1þF2
1,0þF2

2,0þF2
1,1þF2

0,2

F2
0,0

:

A.32. Modified DCT (DCT3)

An efficient implementation of a focus measure based on an
8�8 modified DCT can be obtained by performing a linear
convolution with a mask M [76]. Similarly to DCTR and DCTE,
the focus measure for SFF is computed for every pixel according to
its neighborhood

fx,y ¼
X

ði,jÞAOðx,yÞ

ðInMÞ, ðA:39Þ

where

M¼

1 1 �1 �1

1 1 �1 �1

�1 �1 1 1

�1 �1 1 1

2
6664

3
7775:
A.33. Sum of wavelet coefficients (WAV1)

Wavelet-based focus measure operators are mostly based on
the statistical properties of the discrete wavelet transform (DWT)
coefficients. In the first level DWT, the image is decomposed into
four sub-images, where WLH1, WHL1, WHH1 and WLL1 denote the
three detail sub-bands and the coarse approximation sub-band,
respectively. For a higher level DWT, the coarse approximation is
successively decomposed into detail and coarse sub-bands. The
information of the detail and coarse sub-bands is then used to
compute the focus measure.

Yang and Nelson [68] proposed a focus operator for autofocus
computed from the sub-bands

f¼
X
ði,jÞAOD

9WLH1ði,jÞ9þ9WHL1ði,jÞ9þ9WHH1ði,jÞ9, ðA:40Þ

where OD is the corresponding window of O in the DWT sub-
bands. In this work, the focus measure of all the wavelet-based
operators has been computed using the coefficients of the over-
complete wavelet transform, thus avoiding the need for comput-
ing the corresponding neighborhood within each sub-band. Thus,
OD is simply the same as O.

Huang et al. [77] used a focus measure similar to (A.40) with
2-level DWT and Daubechies-10 filters. In this work, 1-level DWT
with Daubechies-6 filters have been used by following [68] and [70].
A.34. Variance of wavelet coefficients (WAV2)

The variance of the wavelet coefficients within OD can also be
used to compute the focus measure [68]

f¼
X
ði,jÞAOD

ðWLH1ði,jÞ�mLH1Þ
2

þ
X
ði,jÞAOD

ðWHL1ði,jÞ�mHL1Þ
2

þ
X
ði,jÞAOD

ðWHH1ði,jÞ�mLL1Þ
2, ðA:41Þ

where mLH , mHL and mHH denote the mean value of the respective
DWT sub-bands within OD.
A.35. Ratio of wavelet coefficients (WAV3)

Xie et al. [70] proposed the use of the ratio between the high
frequency coefficients MH and the low frequency coefficients ML

of the wavelet transform as a focus measure [70]

f¼
M2

H

M2
L

, ðA:42Þ

where MH and ML are defined as follows:

M2
H ¼

X
k

X
ði,jÞAOD

WLHkði,jÞ
2
þWHLkði,jÞ

2
þWHHkði,jÞ

2, ðA:43Þ

M2
L ¼

X
k

X
ði,jÞAOD

WLLkði,jÞ
2: ðA:44Þ

Sub-index k indicates that the k-th level wavelet is used to
compute the coefficients. According to [70], the coefficients of the
first level DWT are used in (A.43), whereas the third level coefficients
are used in (A.44). The WAV1, WAV2 and WAV3 operators were
originally proposed for autofocus applications. In order to adapt them
to SFF, a focus measure is computed for every pixel Iðx,yÞ by
restricting the sums in (A.40)–(A.42) to the corresponding Oðx,yÞ.
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A.36. Ratio of curvelet coefficients

Minhas et al. [78] proposed a focus measure operator based on
the coefficients of the discrete curvelet transform. In the k-th
level, the curvelet transform decomposes an image into N bands
at different orientations. Similarly to the wavelet-based focus
measure operators described previously, the focus measure is
computed as

f¼
X
ði,jÞAOD

Fyði,jÞ, ðA:45Þ

where Fyði,jÞ is calculated as the ratio between the summed
coefficients of the k-th and ðk�1Þ-th level sub-bands. Let Ck

denote the coefficients of the k-th sub-band, Fyði,jÞ is defined as

Fyði,jÞ ¼

P
Ckði,jÞP

Ck�1ði,jÞ
: ðA:46Þ

Following [78], 2-level curvelet decomposition with eight orien-
tations has been implemented. In order to perform a fair compar-
ison with other focus measure operators, the pre-processing steps
of contrast enhancement and denoising described in [78] have
been omitted.
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